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Summary. The Kedem-Katchalsky equation for the flow of a mono-monovalent 
salt through a highly charged permselective membrane is given as a first order expansion 
of a single integral of the Kirkwood-Bearman-Spiegler equations. The integration is 
performed under the assumption that the partial frictional coefficients (ij are concen- 
tration independent. Conditions for the validity of the expansion are presented. A close 
relationship to the Goldman equation is demonstrated. If impermeable salts are present 
in the bathing solutions, the Kedem-Katchalsky practical parameters co, a, and zl may 
be ill-defined. Nevertheless, an ionic flow equation of similar form, but of significant 
difference, can be derived for this situation. The Kedem-Katchalsky equation for salt 
flow is a special case of this more general equation. 

The practical parameters co, ~, and zl, characterizing the flow of a salt 

through a homogeneous permselective membrane were derived (Kedem & 

Katchalsky, 1963) for a system having only a single salt in the bathing 

solut ion)  Because the cation and anion concentrations are equal to each 

other in either solution, they can be equated to salt concentrations and one 

can use an osmotic driving force A~q=2RT(C~-Cn). It would be most 

unusual to find a biological system where, say, KC1 is the only salt present 

in the solutions on either side of a membrane;  one expects to find divalent 
cations, proteins carrying several ionized groups, etc. In this paper I shall 
derive ionic flow equations for the flow of the components of a mono- 

monovalent salt through a charged permselecfive membrane separating 
two colloidal solutions, i.e., solutions containing impermeable ions in 
addition to the two mobile species. 

1 It is assumed that the reader is familiar with the notation of the Kedem-Katchalsky 
equations. 

1" 
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The How Equations 

If the negative gradients of the electrochemical potentials are chosen a~ 
the thermodynamic forces in an isothermal diffusion system, the conjugat~ 
barycentric flows are given (de Groot & Mazur, 1962) by the linear pheno. 
menological equations 

J~= ~ LijXj, i= 1, 2... n. (1] 
j = l  

Since there are, in general, n independent forces and only n - 1 independenl 
barycentric flows, there must be n conditions on the phenomenological 
coefficients; and indeed, 

~ L  U = 0 ,  i = 1, 2... n. (23 
j = l  

The inversion of these flow equations is therefore neither immediate nor 
trivial and has been discussed in a previous paper (Richardson, 1970). At 
mechanical equilibrium, it is possible to write 

Xi = ~ Rij Jj, i = 1, 2... n, (3) 
j = l  

where J~ = Civi is no longer a relative flow. The conditions on these inverse 
phenomenological coefficients are 

~ Cj Rij=O, i= 1, 2... n. (4) 
j = l  

The physical basis of these conditions is that the motion of the barycenter 
cannot contribute to dissipation (Onsager, 1945). 

Bearman and Kirkwood (1958) used statistical mechanical arguments 
to derive a flow equation in terms of frictional coefficients: 

Xi = ~, (ij Cj (vi-  v j) ,  i = I, 2... n. (5) 
j = l  

In the same year, Spiegler (1958) proposed the following force equation 
based upon a consideration of Newtonian frictions: 

Xi = ~,, flj (vi-  v j) ,  i = 1, 2... n. (6) 
j = l  

Eq. (5) can be written (Laity, 1959; Ciani & Gliozzi, 1965) 

~ ~j Cj 
X i -  j . i  J i - ~ ( z j J j ,  i= 1,2... n, (7) 

Ci j , i  
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and we see that Eqs. (3) and (7) are mathematically equivalent, with 

R~i= - ~ j ,  i # j  (8) 

and that Eq. (7) includes Eq. (4). 

Until the physical properties of the partial frictional coefficients (al- 
though this use of "partial" may not be precise, it does distinguish between 
the Bearman-Kirkwood frictions and those of Spiegler) are specified, 
Eq. (7) is of fimited use. Essentially all we can deduce from irreversible 
thermodynamics is that ~ij=~j~ and that the ffii are independent of the 
forces and flows. However, the form of Eq. (5) shows us that ~ ~ character- 
izes an interaction per molecule of i and ofj. This normalization encourages 
us to assume that within a given phase the ~ j are independent of individual 
concentrations. 

A lucid analysis of electrodiffusion in homogeneous membranes based 
upon the assumption that the partial frictional coefficients ~ j  are con- 
centration independent has been presented by Ciani and Gliozzi (1965, 
1966). In a similar vein, but to a different goal, we start from the same 
differential flow Eq. (7) and analyze the flow of the components of a 
mono-monovalent salt through a highly charged membrane. In a form 
similar to the practical equation for salt flow, the ionic flow is given as a 
function of ionic concentrations in the bathing solutions, the water flow 
and the current. And indeed one can resolve the practical parameters from 
the ionic flow equation under the proper constraints in a system con- 
taining ions of only a single salt: 

r = ( - ~ - )  Jr, t, (9) 

(1 -  o)= (~--~-~)Ar~s,I, (10) 

�9 1 = (-~-)Arc, ,Jv.  (11) 

The ionic flow equation developed here is applicable to systems where 
the bathing solutions contain impermeable ions in addition to the univalent 
permeable cations and anions: we shall call such colloidal systems ionic 
systems. Kedem and Leaf (1966) have discussed the relationship between 
salt and ionic transport coefficients in general thermodynamic terms. Here 
we shall derive the explicit parameters coupling ionic flow to water flow 
(nearly equal to volume flow in dilute solutions), current, and concentration 
differences. It is concluded that great care must be exercised in defining and 
using the practical parameters in ionic systems, which, of course, are the 
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ones most commonly encountered in biology. Before proceeding to the 
integration of the differential flow equations, let us illustrate this poin 
with an example. Consider the two equations for the flow of KC1 througt 
a negatively charged permselective membrane with zero current and nc 
appreciable water flow: 

(1) Impermeable ions are in the bathing solutions I and II, and sc 
C~: # C~1 and C~ + Cc~. As will be shown, the salt flow in an ionic system i,, 

2 
�9 Is = ~ w g 2  ( CIc'!~-'CI - -  ~-~Kr r h~,C1/ (12~) 

XAx 

where K2 is a generalized diffusion coefficient which includes solute-water: 
solute-membrane, and solute-solute frictions. Since we have stipulated 
1= 0, here we have the flow of a neutral salt (KC1) but we cannot resolve 
Eq. (12) into a form where A G = 2 R T ( C ~ -  Cg) is the driving force. 

(2) Suppose that there are no impermeable ions in the bathing solutions, 
only KC1 - i. e., a salt system. We have C~ =Ccll = C~ and C~ = C~ = C~ I. 

where 

Eq. (12) becomes 
2 

XA x 

_ ~2 K2 C~ 
RTXAx Arcs 

= o)A rc~ 

(23) 

I II 
G -  G + G  (14) 

2 

Only in a special case can we define a practical parameter co for neutral 
salt flow which has A n, as the driving force. There is a similar problem of 
definition for the reflection coefficient in ionic systems. Eq. (10) defines a 
reflection coefficient in precise terms but one must also ask: what is the 
parameter relating J~ and Jv when A ns 4 0 ?  We shall integrate the flow 
equations with no constraints upon any forces or flows and shall see that 
the practical equation for salt flow, 

Y~=oA n~ + Cs(1-a).lv +-ff- I , (15) 

is only a special case of a more general ionic flow equation. 

Integration of the Flow Equations 

The membrane system to be considered consists of a permselective 
membrane with a high concentration of fixed-charge sites separating two 
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well-stirred reservoirs denoted I and II. The membrane is perdendicular to 
the x-axis and the membrane-solution interfaces are at x =0 and x = Ax. 
The flows are the ionic components of a mono-monovalent salt and water 
flow. The concentration of the mobile cations in the membrane phase is 
denoted by C1 and that of the anions by C2. These two concentrations are 
functions of the space variable x. The concentration of the membrane C,,, 
the concentration of fixed-charge sites X, and the water concentration C,~ 
are assumed to be constant across the membrane. The membrane con- 
centration C,, is related to the microstructure of the membrane and re- 
presents an effective concentration of molecuies involved in frictional 
interactions. If the membrane is a uniform network of cross-linked polymer 
of, say, three species of concentration ~ Cm, ~2 C.,, and cq Cm, each offering 
different frictions to the i-th mobile species ((iml, (imp, ~,,3), then the 
total interaction is characterized by a single term: C,,,~,,,=C,,,(~,, 1 + 
~2 (~,,~ + a3 ~m3). On the other hand, if the flow is through pores or channels 
in the membrane, then Cm is not the concentration of molecules in the 
membrane matrix, but only that fraction along the walls of the pores which 
partake in frictional interactions. 

The flow equations are, assuming that the electrochemical potentials 
are those of an ideal solution, 

RTcI dCldx F t~ =J1 C2~12drCm(lrn'-~Cw(lVac1 (16) 

and 

RT dC2 dt~ Jl(12+J2 C1(12+Cr~(2'~+C~2~ Jw(2~" (17) 
C2 dx ~-F d ~ -  C2 

By definition, the flow of current is related to the ionic flows by 

I 
J~ -J2 =-if-. (18) 

A complete specification of the problem requires the addition of Poisson's 
equation and suitable boundary conditions at the solution-membrane 
interfaces. 

MacGillivray (1968) has, however, provided a sufficient condition for 
the justification of the familiar electroneutrality assumption which also 
includes in the criterion justification for the assumption of Donnan equilib- 
rium at the interfaces. The criterion (in the simpler notation of Mac Gil- 
livray & Hare, 1969) is that the parameter ~2 is small compared to unity, 
where 

~2= tcoxRT 
F 2 X(A x) 2' (19) 
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Xo is the permittivity of free space, and ~c is the dielectric constant of th~ 
membrane.  

For  a membrane with a concentration of negative fixed-charge sites X 
the condit ion of electroneutrality is 

C1 = C2 + X.  (201 

We are interested here in permselective membranes having rather large 
values of X. To determine the magnitude of ct 2, let us assume that  X =  
10- a moles/cm a : 

(1) For  an artificial membrane with thickness Ax=10  -2 cm and di- 
electric constant ~:, we have 

~2=2.4 x 10 - 1 3 / r  

(2) For  a biological membrane with thickness Ax---70 A, we have 

~2 = 4 . 9  • 10 -5 x. 

Therefore, the condit ion is fulfilled for any realistic value of x. With such 
small values of ~z, the electroneutrality assumption should be quite good. 
But the nonlinear flow Eqs. (16) and (17) are most  easily integrated under 
the well-known constant-field assumption (Goldman,  1943). Furthermore,  
a sufficient condition for the applicability of the constant field assumption 
is that  ~2 be large (MacGillivray & Hare, 1969). That  this condition is not 
necessary and that  for certain systems electroneutrality and a constant 
field are compatible will be shown by the following argument.  Since ~z ~ 1, 
we have the sufficient condition for Eq. (20); we have dC1/dx=dC2/dx 
because X is constant  across the membrane.  We can combine Eqs. (16) 
and (17) to obtain 

a~ 1 { 
- F  clx 2c~+x 22[CrZG,.-~zm)+C~,(~lw-~2w)-2X~12] 

t } (21) 
+~- (2c~ ~1~ + c~ ~1~ + c~ ffl~) + J., [c~ (~ w- ~w) - x ~w] . 

We shall consider steady state flows and therefore J2, I and J~ are constant 
across the membrane.  Furthermore,  we shall consider a membrane having 
a high concentration of negative fixed charges. In such a membrane,  there 
is a high Donnan  exclusion of anions: for example, if X =  10- 3 moles/cm 3 
and the water fraction is ~bw = �89 then 

0~, C1 C~ (see Eq. 36) (a) C2 ~ 2 I 

X ' =  X 2 

~2.5 • 10 -3 if the salt concentration in the bathing 
solutions is 10 -4 moles/cm 3. 
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It follows that 
C2 I ~ l w - ~ 2 w l  ~X~lw, ( b )  

and since Cm and C~ are also much greater than Cz, we can assume 

2C2 C12 ~ C,. if1,, + C,~ ~ .  (c) 

For the sake of this order-of-magnitude argument, we can therefore write 
Eq. (21) as 

d ~ constant 
- F  dx = 2C2(x)+X 

(22) 
,, constant (1 2C~(x) ) - -  ~ 
- X 

We see that - F  ~-~ x varies from a constant value by the fractional part 

2Cz(x) /X ,  which in our systems is of the order of magnitude of 10 -a. If, 
however, there were not a high Donnan exclusion in the membrane, then 
1/[2Cz(x) +X] might be a strong function of x and the field would not be 
constant. We shall conclude that, for the systems we shall consider, the 
electric potential gradient across the membrane is constant: that is, 

- F  ~ x  = k .  (23) 

The conditions (a), (b) and (c) indicate under what conditions the flow 
Eqs. (16) and (17), the electroneutrality condition, and the constant field 
assumption are compatible for a system with a 2 ~ 1. 

Note that k is a constant which by Eq. (21) depends upon the division 
of current between the ionic flows Y~ and Y2. The constant k will be evalu- 
ated as a function of I, J,,,, and the concentrations at the solution-membrane 
interfaces later in the analysis, but only as an intermediate step. The electric 
potential difference will not occur in the final equations for the ionic flows. 

Returning to Eq. (16) we can now write it as 

dC, ,11 
f- a, C, (24) 

dx  - K s 
where 

and 

R T  
K 1 - Cm~lm..it. C w ~ l w _ _ S ~ 1 2  (25) 

1 I Clw) 
al =-~-~ - (-if- ~aa-k-Jw 

Jwfflw , =a 
R T  ' 

where a is defined by the last two equations. 

(26) 
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An integration across the membrane from x =0 to x = Ax gives 

Ja ( e-a1 ~x_ 1) = Ka aa (C'~'- C'l e -al ax) (27) 

where C; = Ca (0) and C~'= Ca (Ax). The boundary values of the concen- 
trations are values determined immediately inside the membrane at the 
solution-membrane interfaces. 

To get an equivalent but more symmetric equation, multiply Eq. (27) 
by exp(alAx),  sum this second equation to Eq. (27), and divide by 2. If 
the exponent is small compared to unity (see Appendix), this symmetric 
equation can be expanded to first order terms to give 

where 

KI 
Jl=-X-x-(ACl-a a C a Ax) (28) 

and 

where 
RT 

K 2 Cm(2m+Cw(2w+X( i2  (31) 

a2 = a + d~ (2___.~ (32) 
R T  

The two equations for the ionic flows (28 and 30) are put into Eq. (18), and 
the constant a is evaluated in terms of 1, J,,, K1, Kz, and the boundary 

A Ca = C~ - C~' and Ca = C~ + C~' (29) 
2 

Although there are superficial differences, Eq. (27) is essentially the 
well-known Goldman (1943) equation. However, here the constant aa 
includes not only the electrical potential drop across the inside of the 
membrane phase but also an ion-ion interaction term and a contribution 
from water coupling. In our analysis, the constant-field condition is valid 
only for highly charged membranes and, if the goal of the analysis were 
Eq. (27), then the Donnan potentials at both of the membrane-solution 
interfaces would have to be added to the potential drop across the inside 
of the membrane in order to present an expression in terms of the full 
measured potential. This type of calculation has been done by Teorell 
(1953). The next few paragraphs will show the close relationship between 
the Goldman equation, the practical salt flow equation, and the ionic flow 
equations. 

We return to the analysis with an integration of Eq. (17) and, after a 
symmetrical expansion, we obtain 

,/2 =ff-~- (AC2 + C2 a2 A x) (30) 
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values of the concentrations. This value of a is then put into Eq. (28) to 
give the flow of the cation, J~: 

_ ~  K1C1 K1AC1-K2AC2 
J l=  AC1 Ax K1CI-bK2 C 2 

K1 C1 K2 C2 (1~+(2~ K 1 C 1 I (33) 
q RT KI~I_[_K2~ 2 Jwq KI~lq_K2~2 F" 

TO be consistent, this flow equation must be reduced to significant first 
order terms since we have already used the assumption C2 ~C1 in the 
justification of a constant field. Because of electroneutrality, AC1 =AC2. 
The reduction will assume that K1 and K2 are of the same order of magni- 
tude. For KC1, flw =f2w in free solution. The paper of Ginzburg and 
Katchalsky (1963) shows thatfs~, is an order of magnitude larger thanf~m 
for sucrose in dialysis tubing; unfortunately this has been used to suggest 
that solute-membrane frictions can be ignored. But these measurements 
were done in water-swollen membranes where Cm, in effect, was rather 
small. If indeed (~,~ is independent of concentration, then f~ ~ = C,, (s,, may 
become significant in tight membranes. If K1 = O(K2), then we can write 
Eq. (33) as 

K2 K2 Cz [1 K2 C2 I 
J~=--~-~-ACl + ~ ( ( l ~ + ( 2 ~ ) J ~ +  ~ K1X ) -if-. (34) 

This equation for cation flow is still not complete because the con- 
centrations are given inside the membrane phase at the solution-membrane 
interfaces, not in the bathing solutions. The condition e2 ~ 1 [see Eq. (19)] 
is sufficient for the Donnan equilibrium to be valid at the interfaces. That 
is, the total driving force of either ion must be continuous across the in- 
finitely thin membrane-solution interface. Thus the relationship between 
concentrations inside and outside the membrane at the interface is 

c ]  c I = c l  c i  

, (35)  _ X+C'2 C2 

The volume fraction of water in the membrane ~bw enters the preceding 
equation because the Donnan condition states that equilibrium exists 
between the external solution and the solution in the aqueous regions in 
the membrane. If we refer back to Eq. (7), we see that C1 and C2 are the 
ionic concentrations in the membrane taken as a unit; hence, if qSw is the 
water fraction in the membrane as a whole, then C~[4~ is the concentration 
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in the aqueous regions. In K~ and/s  the water concentration C,~ is related 
to the water concentration in the external solution by C~ ~-C~/r 

For  a highly charged negative membrane,  a first order solution to the 
quadratic Eq. (35) is 

c l -  r c~ c~ 
X (36) 

and so 
2 I 

C i =Xq  ~b~C1 CI (37) 
X 

There are similar expressions for C;' and C;'. 

Now we can finally write the ionic flow equation in terms of steady 
state flows and the ionic concentrations in the bathing solutions. Noting 
that  r = F~ Cw, we can write Eq. (34) as 

z r 
J1 ( f2 , .+f2~+x~)X~x  

4,~(flw +f2~) (38) 
( f 2 ~ + f ~ + x ~ 2 ) x  

+ [1 flm'q-flw--X~12 
f~,,+f2w+x~'~ 

(CI  CI  1I II 
- C1 C2) 

( c~ c~ + c'~' c~) rw s,, 
2 

2 I 1 II ] r c9 I C 2 -~- C 1 
2X 2 ] -if-" 

The Practical Parameters 

The practical parameters were defined and derived for a system with 
only a single salt in the bathing solutions: C~ = C I = C] and C~ ~ = C2 u = C] ~ 
(Kedem & Katchalsky, 1963). For  this discussion of the practical para- 
meters, we shall assume dilute solutions where the volume flow Jv ~ V~, J,.. 

(1) Permeability, co. In the introductory paragraphs, we anticipated 
Eq. (38) and showed that  co for a salt is clearly defined only in salt systems. 
The flow of neutral salt in an ionic system cannot  be given with A ~rs as a 
driving force. 

(2) Reflection coefficient, a. The reflection coefficient for salt can be 
defined in two ways, and they are not  necessarily equivalent. 

(a) a is defined by Eq. (10). Here C~=C~=C~=Us; 

f rom Eq. (38) we have, 

(ds) qgw(fl w + f 2  w) 2 

a~,,r= (fzm+f2w+X~12) x Cs (39) 

=C~(1-a) ;  
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and we deduce that 

ew C~(f~ ~ +f2 ~) (40) 
( l - a ) =  ( f2 , ,+ f2w+X~2)X " 

(b) a is defined by the practical Eq. (15). That is, given any values of 
A ~rs and /, the term multiplying Jv is defined as 0~(1-a). In this case, 
C~ ~ C II, and Eq. (38) gives 

~bw(fl ~ +f2 ~) C~ 2 + C~ '2 
C~(1-a)= (f2~+f2~+X~12) x 2 (41) 

But this is not a valid definition because the right side of the preceding 
equation cannot be resolved into C~ and a term representing (1 -a ) .  

(3) The transference number for  cations, zl. As the reflection coefficient, 
this parameter can be defined in two ways. 

(a) zt is defined by Eq. (11). Here 

and from Eq. (38) we have 

A,.+k.-x;12 
z t = l  f2, .+f2,,+X~t2 X2 - .  (42) 

(b) If z~ is defined as the term multiplying I/F in Eq. (15), no matter 
what the values of C~, C~ I, and Jv are, then by Eq. (38) 

(C~ + C~ ) ez (43) z l = l  f lm+flw_X~12 12 m 
f2m+f2w+X~12 2X 2 

Salt Flow in O~n-Circuit Systems 

The open-circuit system (I=0) is of biological interest for several 
reasons, two being that the resting potential and most passive flows are 
measured under this condition. Furthermore, it provides an instructive case 
for illustrating the differences between salt flow in single-salt systems and 
in ionic systems. Eqs. (12) and (13) show that there is a significant difference 
in the equations for neutral salt flow in the two types of systems. To make a 
concrete illustration of this difference, let us pose a question. Given that 

! = 0, and, in the language of the neurophysiologist, that EK -- RTF In C~/C~:I , 

is held constant, is the flow of potassium (Jr,=Jc~=Js) definitely deter- 
mined? 

If we have only KC1 and nonelectrolytes in the bathing solutions, the 
answer is "yes" because of Eq. (13). But if impermeable chloride salts are 
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present, the answer is " n o t  at all". In fact, the flow ark might be positive, 

negative, or zero! As an example, fix the value of C ~ -  Cg > 0. Set C~ = CcI~ 

in reservoir I. In reservoir II we put a chloride salt of a large protein in a 
concentration C~ r and with a degree of ionization %. Electroneutrality gives 

C I I  . ~ I I  K + Vv Cv = C~I. (44) 

The ionic flow Eq. (38) gives 

2 

ew K z  *'~II :,1I (45) 
X A  x X A  x CK V v C v �9 

If C II =0,  we have ark > 0. As protein salts are added to solution II, ark de- 

creases and reaches zero. Further increase of C I~ finally makes JK <0.  All 

the while, Er  is held constant and the current is zero. 

Let us denote the potassium-chloride salt concentration by C,1. Then 
C~ = C~I and Cg--C]I. Eq. (45) can be written 

with 

and 

2 
JK(=Js)=C~ ~)wK2xA X CsllI Vp Cp,II (46) 

r K2 C~I (47) 
~~ = R T X A  x 

I I I  
A zcsl = 2 R T ( C s i  - C~I). (48) 

We see that in ionic systems there is a colloidal correction term to the 

p r a c t i c a l  equation for salt flow. 

A p p e n d i x  

The two terms of importance in a i Ax are 

Cw~iw I A x  and Jw~i~ 
R T X  F R T  

~ A x .  

The following values are reasonable for a wide class of artificial membranes: 

fl w = Cw ~1 w = 1.5 • 1015 dynes-sec/mole-cm 
(the value for potassium in free solution); 

Ax = 10 -2 cm; 
X = 10-3 moles/cm 3; 
I = 10-2 amps/cm 2; 

which gives 
C~,r I 

Axe0.05. 
R T X  F 
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For a membrane of biological dimensions- 

we have 

Ax=70A;  

X =  10- a moles/cm a; 

I =  50 amps/cm 2 of aqueous channel, 

Cw~lw I 
- -  Ax~-O.02. 

R T X  F 

The expansion is certainly valid for any water flows satisfying 

10-Scm 
Jw < moles/cm2-sec. 

Ax 

I am most grateful for the substantial advice and encouragement given by Profs. 
A. Katchalsky and K. S. Spiegler. 
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